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A slender-body theory for ship oscillations in waves 

By J .  N. NEWMAN 
David Taylor Model Basin, Navy Department, Washington, D.C. 

(Received 7 June 1963 and in revised form 26 November 1963) 

A linearized theory is developed for the oscillations of a slender body which is 
floating on the free surface of an ideal fluid, in the presence of incident plane 
progressive waves. Green’s theorem is used to represent the velocity potential 
and the first-order slender-body potential is developed from asymptotic approxi- 
mation. The general theory is valid for arbitrary slender bodies in oblique waves, 
and detailed results are presented for a body of revolution. 

1. Introduction 
Efforts to analyse the hydrodynamical characteristics of an oscillating ship in 

waves have been divided primarily between the two approaches of two-dimen- 
sional ‘strip theory ’ and three-dimensional ‘ thin-ship ’ theory. The strip theory 
is semi-empirical in nature and moreover does not provide insight into forward 
speed effects or longitudinal interference effects, while the thin ship theory leads 
to relatively trivial first-order effects and highly complex second-order effects 
whose complete validity has not been verified. Detailed discussions of this 
situation can be found in the papers of Newman (1961), Ursell (1962), and 
Vossers (1 962). 

It has been apparent for some years that a slender-body theory similar to that 
developed in aerodynamics might provide the remedy to this unsatisfactory 
situation. Recently there have been several papers with this goal, directed 
towards both the oscillatory problem in waves and the steady-state problem of 
wave resistance in calm water. We shall restrict our attention here to the simplest 
unsteady problem of an oscillatory ship or floating slender body having no 
forward velocity. This is precisely the problem treated by Ursell (1962), for the 
special case of a body of revolution performing pitch and heave oscillations. Our 
aim in the present paper is to obtain a more general theory valid for non- 
axisymmetric bodies, and allowing for the presence of an oblique incident wave 
system with the resulting transverse as well as longitudinal oscillations. It 
should be noted that the present theory is related to that of Grim (1957, 1960), 
which is based primarily on physical concepts. 

Our analysis is based upon the slender-body approach suggested by Vossers 
(1962), wherein Green’s theorem is employed to formulate the exact problem, 
and a consistent asymptotic approximation is obtained retaining terms of first 
order in the slenderness parameter. This method is quite general since it permits 
the study of higher-order effects and end effects, and it can be applied to the 
problem with forward speed as well. A further advantage of Green’s theorem in 
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the present study is to demonstrate the relation between the free-surface problem 
and its zero frequency limit, corresponding to a double body? in an infinite fluid. 

It will be seen, moreover, that while a consistent first-order velocity potential 
can be obtained, the resulting equations of motion for the oscillations of the body 
in waves are comparatively trivial; the dominant longitudinal forces consist only 
of hydrostatic restoring forces plus the exciting forces due to the undisturbed 
incident wave system, while for transverse motions the simple strip theory is 
recovered. 

2. Basic formulation of the problem 
We wish to consider the oscillatory fluid motion due to a slender body which is 

floating on the free surface of an inviscid, incompressible fluid, in the presence of 
incident plane progressive waves. It is assumed that all oscillatory motions of 
the body and the fluid are small and the problem can be solved within the frame- 
work of linearized water-wave theory. Let (x, y, z )  be a rectangular co-ordinate 
system with z = 0 the plane of the undisturbed free surface and z positive 
upwards. The body is taken to be of length L and maximum transverse dimension 
EL, where E is a small parameter representing the slenderness of the body. The 
body axis coincides with the segment ( -  $L 6 x 6 4.L) of the x-axis, and as 
E + 0 the body tends in the limit to this segment. 

Assuming linearized simple harmonic motion the velocity potential, whose 
positive gradient represents the fluid velocity vector, may be written in the form 

@(x, y, z ,  t )  = #(x, y, z)e-iwt 

= [4&, y, 2) + q5&, y, Z)le-iwt, (2.1) 

where the real part is understood in all expressions involving e-iw‘. The potential 
q5$ denotes the known incident wave potential and q5b the unknown disturbance 
due to the presence of the body. The latter consists of both the disturbance due 
to the body’s oscillations (in calm water) and the diffraction of the incident wave 
system by the (fixed) body. 

If the incident wave amplitude is A and the wave system is moving in a direc- 
tion of angle relative to the x-axis, the incident wave potential is 

q5.  - - g A  - exp [ ~ ( z  + ix cos + iy  sin^)], (2.3) 
0 

where K = w2/g is the wave-number. It is assumed throughout that K L  = O(1) 
with respect to E as €-to. The potential q5b is a solution of Laplace’s equation 
satisfying the linearized free-surface condition 

K$,-= = 0 z = 0, 

t Throughout the paper the ‘double-body problem’ implies a rigid free-surface condi- 
tion aq5jaz = 0, or by reflexion the problem of a double body in an infinite fluid. However, 
the latter must have as its normal velocity an even function of z, and thus for vertical 
motions (pitch and heave) a pulsation of the double body is implied. 
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and the kinematic boundary condition 

86. 
- = V,--' on 8, 
an an 

where S is the submerged surface of the body in its mean position and V, is its 
normal velocity. In  addition the potential $b must satisfy a radiation condition 
of outgoing waves at infinity and its gradient must vanish as z + - 00. 

From Green's theorem the potential $b at any point in the fluid may be 
represented in the form 

(2 .5 )  

where the integral is over the surface S, the direction of the normal n is into the 
body, and the Green's function is defined (cf. Wehausen & Laitone 1961) by the 
expression 

Q = Go+G,, (2.6) 

(2.7) 

(2.8) 

Go = [ (x-C;) '+(!/-q) '+ (~-<) ' ] - -3+ [(x-C;)'+ (Y-?)'+ (~+9)'1--3, 
G, = 2~ lom ek(s+c)Jo(k[(x - C;)Z + (y - 7)239) . 

* 
The contour of integration in the integral for G, is indented below the singularity 
k = K ,  in order to satisfy the radiation condition of outgoing waves at infinity. 
Physically the Green's function G represents the potential of an oscillatory 
source, located beneath the free surface at  the point x = C;, y = q, z = 6; the 
function Go is the elementary source function 1/R plus its image above the free 
surface, and the function G, represents the necessary correction to account for 
free-surface effects. 

3. Results of the slender-body approximation 
A slender-body approximation for the velocity potential will be derived in 

$4, but before proceeding to the derivation it may be advantageous to first 
present the more important results. It will be shown that if the field point 
(x, y, z )  is in the 'near field', i.e, a distance O(e)  from the body surface, then (2.5) 
has the limit 

where 
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In  these equations the error is a factor 1 + O(e1og 8). The integral 
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in (3.2) is over the submerged contour of the body in the transverse plane 
6 = const., and i t  corresponds physically to the fluid flux through this contour. 
The functions Jo and Yo are the Bessel functions of the first and second kind, 
respectively, and Ha is the Struve function. 

Equation (3.1), which clearly is related to the double-body problem, can be 
reduced further by considering the limit of surface integrals with the kernels Go 
and aG,,/an. Thus, to the same degree of approximation, (3.1) is equivalent to 

(3.3) 

and p2 = (y - q ) 2  + ( z  - 5)s .  The contour (?? is the image of C above the plane z = 0,  
and sgn (x - t)  = & 1, according as x - 6 0 ,  respectively. 

Finally, the solution of these equations will be establishedin the two equivalent 

(3.5) 
forms 

$&, Y, d r 4 o ( X ,  Y, 2) + P ( X )  

and hlcx~ Y > 4  = $ZD(Y, 2; 4 +fW, (3.6) 

provided the field point is in the near field or on the body surface itself. In (3.5) 
the potential is the three-dimensional solution of the double-body problem, 
satisfying the boundary condition (2.4) on S and the rigid free-surface condition 
a$/az = 0 on z = 0. Similarly, in (3.6) the potential cj20 is the two-dimensional 
solution of the same double-body problem in the transverse plane x = c0nst.t 

The two results (3.5) and (3.6) have been presented separately since (3.5) shows 
more clearly the role of the free surface effects, or the relation between the 
potentials $b and while (3.6) is the logical result of the complete slender-body 
approximation. Thus the function F ( x ) ,  defined by equation (3.3), represents the 
effects of the free surface (and the dependence on the wave-number K )  while the 
function f ( x ) ,  defined by (3.4), contains in addition the usual interaction integral 
resulting from the slender-body approximation of the potential g30. 

It should be emphasized that the potentials given by (3.5) and (3.6) can hold 
only in the near field (and on the body). This is obvious from the fact that they 
satisfy neither the free-surface condition nor Laplace's equation, except in the 
limiting sense for small values of the co-ordinates y and z. An expression for the 
potential valid throughout the fluid domain can be obtained by substituting 
(3.5) or (3.6) in Green's theorem (2.5), but this procedure is unnecessary if one is 
concerned only with the near field, as in considering the pressure distribution 
at the body. 

Actually it is necessary to be mop0 specific since the potential &, is arbitrary, to the 
extent of adding a non-trivial constant. It is sufficient to require that 

with a suitably chosen constant C. 
&, N Clog(y2+z2)/L2+o(1), for y2+z2 -+ 00, 
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We note that if &$,/an is an odd function of y, as in transverse oscillations, then, 
from (3.2), the function F ( x )  vanishes. Thus to leading order the near field poten- 
tial for transverse or asymmetric modes is identical to the corresponding potential 
for the double body in an infinite fluid. On the other hand for symmetric dis- 
turbances, as in pitch and heave, the function F(x )  will be non-zero and the 
effects of the free surface will appear in the first-order potential. This result has 
been deduced from physical reasoning by Grim (1  957). 

4. Derivation of the slender-body potential 
In  order to derive the results presented in § 3 we shall require the near field 

potentials of simple source and normal dipole distributions on the submerged 
surface of a slender body. These relations are fundamental to the derivation of 
slender-body theories from Green’s theorem and are derived in the Appendix. 
The results are as follows:? 

a - 2 s  p(z, 1) - log (p/L) dl .  
C an 

These approximations are valid both for an open surface 8, such as for a floating 
body where S is bounded by the plane z = 0, in which case the contour C is open, 
and also for a closed surface S such as a submerged body or one in an infinite fluid, 
in which case the contour C is closed. The error in (4.1) and (4.2) is connected 
with ‘end effects’, depending both on the proximity of the field point to the ends 
of the body and on the geometrical nature of the body ends, i.e. whether they are 
blunt, pointed or cusped. For the present application it is sufficient to say that 
the error is a factor 1 + O ( E )  everywhere for pointed or cusped bodies, and except 
near the ends for blunt bodies. Further details can be inferred from the Appendix. 

It is now a straightforward matter to derive the results of Q 3. Let us first 
consider the limiting form of the function GI, defined by equation (2.8), and its 
normal derivative. Since ( x +  6) and (y-7) are both O(e) ,  the asymptotic limit 
of G, is 

= nK{ -Ho(KIx-<1)-Yo(KI~-<1)+2iJo(KIx-~I)}, (4.3) 

t In equation (4.2) the length parameter L is arbitrary, and it is inserted only because 
p has the dimensions of length. In  fact, the same is true in (4.1), provided the same 
length parameter is used in both terms on the right-hand side. 
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with an error of order (eVG1). The notation is that of Watson (1952), and the 
integrals involved can be evaluated from the results of $5 13.2 and 13.6 therein. 

Similarly, assuming differentiation under the integral sign is permissible, 

3 - ~KJ: ek(s+c)j',(k[(x - ~ ) 2 +  (y - 7)213) dk ag = 

The functions represented by the sums within braces in equations (4.3), (4.4) 
and (4.5) are integrable, having a t  most logarithmic singularities. 

From the limiting form (4.3) for G, it  follows directly that 

- &J(K Ix- -1 ) + 2 4 ( K  Ix - f l [  ))a 
= 47rrF(x). 

Since 

it follows that F ( x )  = Of€). The error in (4.6) is 

l c d l  = O(e)  and a#,/& = V, - i3#i/an = O( l), 

where the second estimate follows from an analysis similar to that given below 
in the next paragraph. Thus the error in (4.6) is a factor 1 +O(elog E). 

Next we must dispose of the integral 

by showing that it is O(#hElogE). Since the area of the surface X is O(E), the 
proof is trivial for all terms in (4.4) and (4.5) which are bounded as e+O, or as 
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in the case of the second summand of (4.5), products of an integrable function of 
(x- <) times a function which is bounded as E-+ 0. Thus we need consider only 

This integral can be regarded as a surface source distribution, of density 

Since the quantity in square brackets is continuous and bounded, as 6 - f  0, it 
follows from (4.1) that 

Substituting this result and equation (4.6) in the exact form of Green's theorem, 
(2.5), we obtain the asymptotic result 

(4.7) 

which is valid for field points in the near field, with the error a factor 1 + O ( E  log 6) 

Equation (4.7) will be recognized as the integral equation? (i.e. Green's 
theorem) corresponding to the solution $o of the double-body problem, modified 
by the free term P(x) .  Thus the solution $b = $o+3"(x) can be anticipated, but 
to verify this conclusion we shall reduce the surface integral appearing in (4.7) to 
its slender-body limit, using the equations (4.1) and (4.2) for source and dipole 
distributions. The result, by direct substitution of (4.1) and (4.2) in (4.7), is 

with the error again a factor 1 + O(e1og 8). 

Substituting this assumed potential in (4.8) we have 
Now we can verify that the solution of (4.8) is the potential $b = (PzD+f(x). 

but $2D satisfies the classical integral equation 

(4.9) 

t We use the term 'integral equation' here in a generalized sense, since the field point 
is not on the body. Clearly, however, equations of this sort are equivalent to integral 
equations since one may pass to the appropriate limit where the field point is on the body. 
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corresponding to two-dimensional flow past the double-body in an infinite 

(4.10) 
fluid. Moreover, 

since this is the potential of a uniform normal dipole distribution over a closed 
contour, and the field point (y, z )  is outside this contour. Thus we have verified 

-log- a P  d2 = 0,  J c+can L 

- 

(4.11) that the potential 
$b = #2D +f(z) 

satisfies the integral equation (4.8) and is therefore the desired solution of our 
problem. 

Repeating the above analysis with F ( x )  = 0, we obtain the classical slender 
body result 

It follows that the ‘two-dimensional’ solution (4.11) for the free-surface problem 
is equivalent, to the degree of approximation retained throughout, to the three- 

(4.13) dimensional potential 

and thus that (4.13) is also a solution of the original problem. 
This completes the derivation of the results presented in 3. 

$b = + O + F ( x ) ,  

5. Bodies of revolution 
While the solution presented in $93 and 4 is valid for quite general slender 

bodies, the double-body potentials $o and q52D cannot be obtained explicitly 
unless the transverse contours C are of simple geometrical shape (i.e. unless 
these can be mapped on the unit circle in closed form). Thus to proceed further 
for a general body, such as a ship hull, would require a numerical procedure. In  
order to  continue the analysis we shall restrict ourselves to bodies of revolution. 
In  this way the application of the results can be illustrated most easily, and 
comparison with Ursell’s (1962) theory can be made. 

The body will be defined by the equation 

r = r0(x:), for - kL ’< x: Q $L, (5.1) 

where r,, = O(s) .  Here ( r ,  6) are polar co-ordinates about the x-axis, such that 

y = rsin6 - 2  = rcos6. 

We shall assume the boundary condition on the body to be of the form 

&#,jar = V ( X )  sin 6 + W(X) cos 8, - in 4 8 e in. (5.2) 

Thus V ( x )  and W ( z )  denote the transverse and vertical velocities at each section, 
respectively. 

For the double-body potential q50 we require an even function of z, or a solution 
satisfying the boundary condition 

aq5,lar = V ( z )  sin 6+ W ( z )  lcos 61, for r = ro(z) and 0 < 0 < 27r. (5 .3 )  
39 Fluid Mech. 18 
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The required potential is well known (cf. Ward 1955, §9.3),  the general form 
for a solution symmetric about z = 0 being 

Differentiating (6.4) with respect to r and using the boundary condition (5.3) to 
evaluate the unknown coefficients, it follows that 

ao(x) = -r-lr,(x) W ( x ) ,  (5.5) 
3 ( - 1 ) n  

an@) = - __ [~o(x) l"+lW(~) ,  (5.6) 

bl(x) = - $-[ro(x)]2 V ( x ) ,  (5 .7 )  

and b,(x) = 0 (n* 1). (5 .8 )  

77 4n2- 1 

Thus the potential $o is given by 
3 L 2  ai ( - l ) ,  2n  

cos 2no $o = - ; W ( x )  ro log; + - W ( x )  ro 
7T n(4n2- 1) (?) 

To this we must add the free surface contribution 

Thus for a body of revolution the complete first-order near-field body 
potential is 
I 

L 2  co ( -  'In (!!?)2n cos 0 
Y 

$b = -; W(r)ro(x) log-  +- W(x)r , (x )  C -___- 
r n -  I n(4n2-1) r 

with an error of order c2 log2 E .  

Finally, we note that 

{ -Ho(K Ix- 61 ) - Yo(K Ix - 61 ) + aiJ,(K [x- )} 
= 2iHh1'(K 1 % -  [I ) -H,(K Ix-61) + Y o ( K \ ~ - [ I  ) 
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where I l k 1 )  is the Hankel function, Hi') = J, + iY,, and 
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Using these relations and integrating once by parts we can verify that, with 
V ( x )  = 0,  equation (5.11) is equivalent to the first-order terms in Ursell's 
corresponding potentialt (Ursell 1963, equation (3.19)). Thus we have verified 
that, to the degree of approximation retained here, our results are consistent 
with those of Ursell. 

6. The forces and moments on a body of revolution 
From the linearized Bernoulli equation, neglecting second-order terms in the 

oscillation amplitudes, the hydrodynamic pressure in a fluid of density p is 
given by 

where we have suppressed the factor e-i"t. Thus the four hydrodynamic forces 
and moments acting on the body are 

p = i W P 4 ,  

where we delete the force Pz which is of higher order. Substituting for 4 froin 
equations (2 .2 )  and (5.11) we obtain 

where we have used the relation 

- ;-2log2. 1 53 

\- ~ - 3 
7 n(4n2- 1 ) 2  

t In  fact the last term of (5.11) involving T'(z), or transverse oscillations, can be found 
from Ursell's analysis if a11 singularitios therein are replaced by their transverse derivatives. 

39-2 
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Now the practical case of a rigid body floating in waves can be considered. 
Let the amplitudes of the four oscillatory displacements of the body be 

= e-iwt 
0 (sway 1 , 

5 = <oe-iut (heave), 

x = ~ ~ e - ' ~ ~ ~  (pitch), 

@ = @oe-iui (yaw). 

Then the boundary condition on the body is 

iw(c0 - q0) cos 0 - iw(yo + ~ 1 / / ~ )  sin 0 

Comparing (6.5) with (5.2) we see that the appropriate functions V and If' are 
given by 

Substitution of (6.6) and (6.7) in (6.3) and (6.4) gives the total hydrodynamic 
forces acting on the body. After some reduction we obtain 

(6.9) 

The total forces and moments acting on the body will consist of the hydro- 
dynamic components, represented by (6.8) and (6.9), plus the inertial forces and 
moments due to the body's own mass and the hydrostatic restoring force and 
moment associated with the displacement of a floating body from its equilibrium 
position. The desired equations of motion are obtained by sett,ing these total 
forces and moments equal to zero, signifying that there are no further restraints 
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or external forces acting on the body. Since there is no coupling between the 
transverse (sway and yaw) and longitudinal (heave and pitch) modes, the four 
resulting equations of motion can be analysed and discussed as two separate 
pairs of equations. 

First, we consider the transverse equations of motion, consisting of the hydro- 
dynamic contributions from (6.8) plus the inertial force and moment associated 
with sway and yaw acceleration. (There is of course no hydrostatic force or 
moment in the transverse modes.) Since the inertial forces are of the same order 
as the body’s mass, or O(@),  the resulting total forces are entirely of second order 
in e ,  and a consistent pair of equations of motion follows. For a symmetrical 
body these will be uncoupled and we obtain the solutions 

(6.10) 

(6.11) 

where 31 = body mass, 
Izza = moment of inertia of body, 
IZzf = moment of inertia of displaced fluid. 

The equations of motion for pitch and heave are obtained by summing the 
hydrodynamic components (6.9), the corresponding inertial force and moment, 
and the hydrostatic restoring force and moment. These equations will not be 
homogeneous in c since both the hydrostatic components and the exciting force 
and moment from the undisturbed incident wave (represented by the last term 
in (6.9)) are of first order in c, while the remaining forces and moments are O ( E ~ ) .  
Thus for vertical oscillations the hydrostatic restoring force and moment plus 
the exciting force and moment from the undisturbed incident wave pressure field 
will dominate the dynamic behaviour of the body and determine, in a relatively 
trivial manner, the pitch and heave motions of the body. All hydrodynamic 
effects due to the body’s disturbance of the water and all inertial effects will be 
of higher order in the slenderness parameter c. 

7. Conclusions 
TWO essentially separate considerations should be discussed: viz. the develop- 

ment of the velocity potential due to the motions and wave diffraction of a 
floating slender body and, on the other hand, the application of this solution to  
the equations of motion for a slender body in waves. 

With regard to the velocity potential, the first-order solution is presented in 
equation (3.5). This solution consists of the zero-frequency potential, or the 
potential of the double body, satisfying the boundary condition a#/& = 0 on 
x = 0 ,  plus a function F ( x )  equal to an integral transform of the total velocity 
flux at each section of the body. For transverse motions, where the total flux 
vanishes, the function F ( x )  is zero, and to 1ea)ding order the near-field potential 
is identical to that of the double body in an infinite fluid, with no free-surface 
effects present. For motions in the longitudinal plane the function F ( x )  is 
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non-zero and represents the effect of the free surface, including an imaginary 
term which gives rise to a wave damping force and moment. For the special case 
of an axisymmetric body the potential reduces to that obtained in a somewhat 
different manner by Ursell (1962), who also included second-order effects. In 
comparison to Ursell’s approach, the present method based upon Green’s 
theorem has the advantage of being valid for non-axisymmetric bodies. In  
principle we could retain higher-order effects analogous to Ursell’s, by an 
iterative process, but considerable algebraic effort would be required. The 
present method also permits the examination of end effects. I n  developing the 
velocity potential we have assumed that the body has pointed ends, but un- 
doubtedly this restriction could be removed to permit blunt ends, by including 
additional end-effect terms such as are found in the Appendix. The final form 
of the forces and moments suggests that in fact these particular results are valid 
for a body with blunt ends, but this statement has not been proved. 

With regard to the equations of motion for a floating slender body in waves, 
it is clear that our results are relatively trivial. For transverse oscillations, con- 
sistent results are obtained including the hydrodynamic forces, but these do not 
include any free surface effects, and in fact are identical to the classical ‘strip- 
theory ’ approach. For longitudinal oscillations, free-surface effects including 
damping are present, but the total force is dominated by lower-order hydrostatic 
and wave-exciting forces, with inertial, added mass, and damping effects all of 
one order higher in the slenderness parameter. Thus to leading order there is no 
resonance frequency or phase shift.? Nor is i t  justifiable a priori to rectify this 
situation by including the derived second-order effects, for if these are significant 
in the equations of motion all higher-order terms must be retained, unless other- 
wise established as being unnecessary.: This situation is analogous to the basic 
objection raised to thin ship theory, where on the other hand inertial forces are 
included in the lowest-order equations, leading to a resonance frequency with 
undamped oscillations (cf. Newman 1961). Thus i t  is clear that, in its present 
form, slender-body theory has not overcome all the objections of thin-ship 
theory. The situation is similar in studies of the steady state wave resistance 
(Maruo 1962; Vossers 1962; Tuck 1963) where the leading order resistance from 
slender-body theory is simply the limiting value of Michell’s integral, based upon 
thin-ship theory, as the draft tends to zero. 

A major portion of this research was performed during a visit at the University 
of Manchester, under support from the Office of Naval Research. The author js 
grateful for the stimulating discussions and criticism provided by Professor 
F. Ursell, of the University of Manchester, and by Drs T. F. Ogilvie and E. 0. 
Tuck, of the David Taylor Model Basin. 

In fact there will be some phase variation for non-symmetrical bodies due to the 

1 A possible approach t o  this problem is that adopted by Vossers (1962). wherein 
frequency-dependent phase of the complex exciting force. 

r,/L 6 1 but Kr, = O(1).  
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Appendix 

Here we shall derive the asymptotic expressions (4.1) and (4.2), for the 
potential of a distribution of sources or normal dipoles over the surface of a 
floating slender body. First, let us consider the case of a source distribution, of 
density a(S). Let the body surface S be defined by the (single-valued) function 

r = ro([ ,  0) for - +L ’< [ ’< hL and -in 4 0 d +n. 

Here (r ,  0 , t )  are circular cylindrical co-ordinates, with 

7 = rs ine and 6 = -rcosH. 

The differential element dS of the surface S is 

With these substitutions the integral (3.5) is given by 

where p2 = ( y  - + ( z  - <)2. Making use of the relation 
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and performing a partial integration with respect to 5, we have 

If  we assume that the body is slender, with pointed ends, and that the field 
point is in the near field, it follows that 

are 
a< p = O(e) ,  ~ = O(e),  and r0( &L) = 0. 

Thus i t  follows that 

with the error a factor 1 + O(e2). Since 

the differential element of arc length along the contour C ,  the final result is 
obtained that 

- 2 Jc c ( x ,  I) log ( p / L )  dl .  (A. 4) 

Here the contour C is the intersection of the transverse plane x = const. with 
the submerged surface S. Thus for a floating body the contour C is open, but by 
a similar proof the same relation applies for a slender body in an infinite fluid 
(or totally submerged beneath the surface), in which case the contour C would 
be closed. 
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Next let us examine the corresponding asymptotic approximation for a 
normal dipole distribution. With the same notation we have 

- __ '1 [(x-()2++2]-4, (A.5)  
ax ax 

where n20 denotes the two-dimensional normal in the plane c = const., or 

The term in (A. 5) involving ajax can be treated by partial integration and the 
use of the relevant equations for a source distribution, and for the slender body 
with ro = O ( E )  and aro/ax = O(e) ,  the contribution from this term will be 
O ( p 2  log E ) .  Thus 

and integrating twice by parts, it  follows that 

+o(pus210g~), 

where we have assumed that ro( 4L) = 0. 
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The second term in the last equation is equal to 

while the first term is 0(p2 loge). The last term is O(ye2) for - &L < x < gL and 
O ( p )  for x = &L. Therefore 

d 
I - 3 J- y(x7 I) 2; log (p /L)  d l ,  (A- 8) 

c' 

with the error a factor 1 + O(e2 log E )  except near the ends, where for pointed 
bodies the error is a factor 1 + O(e).  


